I-VESSEG: A framework to accelerate cerebrovascular image analysis

I-VESSEG - un cadre méthodologique pour accélérer l'analyse d'images cérébrovasculaires

Maria A. Zuluaga

Data Science Department - EURECOM School of Biomedical Eng. & Life Sciences – King's College London

CONTEXT & MOTIVATION

The Cerebrovascular Tree

[Uludağ & Blinder, Neurolmage 2018]

The **cerebrovascular system** is a **complex network** of arteries and veins supplying the brain cells with nutrients and oxygen.

Given its high complexity, in-depth understanding of its anatomy and function is a challenging task [Ramos et al., Forkert et al.].

Ex-Vivo Analysis

In-Vivo Analysis

The Cerebrovascular Tree

[Uludağ & Blinder, Neurolmage 2018]

The **cerebrovascular system** is a **complex network** of arteries and veins supplying the brain cells with nutrients and oxygen.

Given its high complexity, in-depth understanding of its anatomy and function is a challenging task [Ramos et al., Forkert et al.].

In-Vivo Analysis

Analysis Pipeline

[Livne et al. Front Neurosci 2019; Hilbert et al. Front in Al 2020; Ni et al CIBM 2020; Tetteh et al. 2020; Mou et al, MedIA 2021; Dang et al 2021]

No successful end-to-end pipeline

Analysis Pipeline

Common to all stages there is image segmentation (an open problem)

¹ https://radiopaedia.org/articles/carotid-artery-stenosis

I-VESSEG Framework

Our hypothesis:

To reach a better understanding of the cerebrovascular tree architecture and function we need to solve current methodological challenges that limit its quantification and characterization in a reliable, reproducible and efficient way

Our goal:

To develop **learning-based tools** that **ease the analysis** of the cerebrovascular tree in a **seamless way**

Where to start?

Segmentation

Modellin

[Livne et al. Front Neurosci 2019; Hilbert et al. Front in Al 2020; Ni et al CIBM 2020; Tetteh et al. 2020; Mou et al, MedIA 2021; Dang et al 2021]

- Critical to all the stages of the analysis pipeline
- Remains an open problem
- Learning-based methods have not reached maximal performance yet

2020 25th International Conference on Pattern Recognition (ICPR) Milan, Italy, Jan 10-15, 2021

Vesselness Filters: A Survey with Benchmarks Applied to Liver Imaging

Jonas Lamy*, Odyssée Merveille[†], Bertrand Kerautret^{*}, Nicolas Passat[§], and Antoine Vacavant[‡] * Université Lyon 2, LIRIS (UMR 5205), Lyon, France

An Overview of Deep Learning for Medical Image Analysis

Word count:

Term	Count	
Artery/Arteries	4	
Carotid	2	
Vessel	15	
Carotid	2	
Carotid	6	
Brain	62	

Source: Litjens et al, MedIA 2017

Data Availability

VS.

Study	Image Modality	Database Size	Public Images	Public Labels
Livne et al.	TOF	66	Ν	N
Hilbert et al	TOF	264	Ν	N
Ni et al.	СТ	20	Ν	N
Tetteh et al.	SYNTH/mCT/TOF	136/20 ¹ /40	Y²/N/N	Y/N/N
Taher et al.	TOF	270	Ν	N
Mou et al.	SYNTH/TOF	136/50	Y ² /Y ³	Y/N
Dang et al.	SYNTH/TOF/SWI	136/150/30	Y²/N/N	Y/N/N

TOF: time-of-flight, CT: computed tomography, SYNTH: synthetic, mCT: micro computed tomography, SWI: susceptibilityweighted images

M. Livne et al. Frontiers in Neuroscience (2019); A. Hilbert et al. Frontiers in Al (2020); J. Ni et al., Comput. Biol. Med. (2020); G. Tetteh et al. Frontiers in Neuroscience (2020); F. Taher et al. IEEE Access (2020); L. Mou et al. MedIA (2021); V. Dang et al. MedIA (2022)

Multiple Image Modalities = Multiple Methods

No single technique can be used across modalities

Traditional methods

Ad-hoc tuning

ML/DL techniques

- Re-training
- Re-labelling

- Accelerate Image Annotation
- Reduce Number of Required Annotations
- Generalization

ACCELERATE IMAGE ANNOTATION

State-of-Things: 3D Brain Vessel Segmentation

Brain Vasculature: Anatomical planes & 3D segmentation

Challenges: Complex tree-like structures and small objects

State of the art

- ML/DL methods not as established
- Pixel-wise annotation is prone to errors and expensive
- Most weak labels for segmentation assume blob-like objects
- Ad-hoc filters prone to errors

Multi-instance learning: Relax constraints on granularity of the annotations

Multi-instance (MI) vs. Supervised Instance (SI) Learning

Supervised Instance (SI) – Supervised Instance (SI)

Train on instance, test on instance

Multi-instance (MI) vs. Supervised Instance (SI) Learning

Diagram adapted from V. Cheplygina, DMJ. Tax & M. Loog, Pattern Recognition (2014)

Multi-instance (MI) vs. Supervised Instance (SI) Learning

Train on bag, test on instance

Vessel-Captcha: Efficient Vessel Annotation & Segmentation

In collaboration with: UCL, Inria & Universitat de Barcelona

- 1. MI-SI: EASE ANNOTATION VIA TRAIN ON BAGS, TEST ON INSTANCES
- 2. MI-MI: DATA AUGMENTATION & FILTERING VIA TRAIN ON BAGS, TEST ON BAGS

Vessel-Captcha: MI – SI to Ease Annotation

Vessel-CAPTCHA

Completely Automated Public Turing Test To Tell Computers and Humans Apart – CAPTCHA [von Ahn & Dabbish, 2004] 1. MI-SI: EASE ANNOTATION VIA TRAIN ON BAGS, TEST ON INSTANCES

▲ - Image Pixel

Annotation Rule:

 $\widehat{X}_k: D_k \to \mathbb{R}$ $U_k: D_k \to \{0,1\}$

 $f(U_k) = 1 \Leftrightarrow \exists (i,j) \in D_k \ s. \ t. \ U_k(i,j) = 1$

V. Dang, F. Galati, R. Cortese, G. Di Giacomo, V. Marconetto, P. Mathur, K. Lekadir, M. Lorenzi, F. Prados-Carrasco, MA. Zuluaga MedIA 75 102263 (2022)

MI-SI: Ease Annotation Via Train Bags, Test on Instances

Vessel-CAPTCHA

Problem: How to go from the bag to the instance?

Trick for semantic segmentation: Generate weak instance-level labels

0.

[Ahn & Kwak, 2018; Hong et al. 2017; Luo et al. 2020; Schlegl et al. 2015]

$$M_k(i, j) = \begin{cases} 0 & \text{if } f(U_k) = \\ KM(\hat{X}_k(i, j)) & \text{otherwise,} \end{cases}$$

Vessel-Captcha: MI-MI for Data Augmentation & Filtering

MI-MI: DATA AUGMENTATION & FILTERING VIA TRAIN ON BAGS, TEST ON BAGS

- 2D Image Patch:
$$\hat{X}_k$$

Classification Network acts as a second opinion

		VGG-16	ResNet	2D-UnetCl	2D-PnetCl
	Precision	92.48±1.54	93.66±1.48	94.82 ± 0.48	94.91±1.04
TOF	Recall	87.39 ± 4.60	93.27±1.73	94.04 ± 0.65	94.94±1.09
	F-score	88.68 ± 3.81	93.34±1.62	94.27±0.54	94.71±1.23
SWI	Precision	82.34±1.15	80.14±1.13	82.44±1.18	82.97±1.55
	Recall	77.45 ± 4.17	79.39±3.35	74.35 ± 5.35	79.30±4.07
	F-score	78.76±3.39	79.17±2.31	76.42 ± 4.63	80.31±3.31

Vessel-Captcha: Performance Analysis

<u>Conclusion:</u> Multi-instance learning allows to reduce annotation burden of neurovascular images by 77% without degrading performance

REDUCE REQUIRED ANNOTATIONS

State-of-Things - Continued

Brain Mask Segmentation as a Requirement

State-of-the-art 3D brain vessel segmentation requires a **brain mask**

- **Training:** Removes non-brain signal
- Testing: Limits inference space

State-of-the-art brain segmentation methods fail on neurovascular image modalities

Background: Multi Task Learning (MTL)

Typical setup consists of a **shared deep network** with **task-specific** prediction **heads**

Idea: Use MTL to simultaneously segment the vessels and the brain

- Pro: No brain masks at inference
- Con: Brain masks for training

Challenge: Brain and vessels are objects with very different sizes

JoB-VS: A Joint Brain-Vessel Segmentation Framework

In collaboration with:

- Builds upon the RObust Generic medical image segmentation framework (ROG)¹. ٠
- Triangular-shaped lattice to preserve the advantages of multi-scale processing. ٠
- **Dual segmentation head** for simultaneous brain and vessel segmentation. ٠

Société numérique

JoB-VS: Performance Analysis

Model	Brain DSC (%)	Vessel mAP (%)	
Single-task	96.29±0.08	66.67±7.61	
JoB-VS	95.73±0.74	70.03±4.31	

Quality of the mask plays a crucial role

Left: Benchmarks use ground truth mask Top: Single task model uses automatic mask

N. Valderrama, I. Pitsiorlas, L. Vargas, P. Arbelaez, MA. Zuluaga. In: IEEE ISBI 2023

Job-VS: Generalization Capabilities

SHINY-ICARUS

Task: Segmenting a vascular tree that branches from the Internal Carotid Artery (ICA) with an aneurysm.

JoB-VS achieved an average dice score of **92.3** and a clDice of **90.9** in the test set.

SMILE-UHURA

Task: segmentation of small vessels from 7T MRA images.

JoB-VS achieved an average dice score of **79.2** and a clDice of **79.4** in the validation set.

N. Valderrama, I. Pitsiorlas, L. Vargas, P. Arbelaez, MA. Zuluaga. In: IEEE ISBI 2023

GENERALIZATION

A Quick Recap

Two generalizable architectures that can segment vessels from different image modalities Each modality requires separate training: no single model can cope with multiple modalities Same underlying information (vessels), but easier to identify in some image modalities

Can we learn to segment from the easier task and use this knowledge in the difficult one?

Domain Adaptation for Vessel Segmentation

In collaboration with: Aramis Lab, CHU Nice, UCL and U. Siena

A2V: Performance Analysis

com & Société numérique

F. Galati, D. Falcetta, R. Cortese, B. Casolla, F. Prados, N. Burgos, MA. Zuluaga (Under review)

32

EURECOM

FINAL REMARKS

Model	Training	Inference			
		TOF	SWI	TOF 7T	DRA
Vessel-CAPTCHA	TOF	79.32 ± 3.02			
	SWI		Good		
JoB -VS	TOF	74.98 ± 0.58			
	TOF 7T			79.2*	
	DRA		·		92.3*
A2V	TOF	79.3 ± 4.4	70.4 ± 2.4		

*Estimated by challenge organizers

Gaining a better understanding of the cerebrovascular tree architecture is currently challenged **by technical and methodological bottlenecks** that limit its analysis

Strategies to overcome this limitations include: efficient use of data, minimization of user interaction and better generalization

However, there are still several aspects that need to be solved: **access to larger sets of data**, **heterogeneity, robustness, quality control**, **reliable evaluation** and an <u>unified framework</u>

3iA Côte d'Azur Interdisciplinary Institute for Artificial Intelligence

I-VESSEG: A framework to accelerate cerebrovascular image analysis **MERCI**

https://github.com/i-vesseg/

