

Multiscale Modeling of the Hepatic Perfusion

Mohamed CHETOUI Mathilde Morvan Pierre Beaurepaire Antoine Vacavant

15 - 06 - 2023

Context

Methodology

Some results and perspectives

Blood supply

- Portal vein (≈70%): nutrient-rich blood
- Hepatic artery (≈30%): Oxygen-rich blood

Outgoing blood

Hepatic vein: deoxygenated and filtered blood

Hepatic lobule

- Portal triad (3 capillaries)
- Central Vein (toward Hepatic vein)
- Sinusoids with fenestrations

Liver modeling contribution

Provide quantitative information

- Blood flow
- Local pressure

Help to understand pathological mechanism

- Effect of structural alteration on blood flow
- Relationship between macro and micro-circulations

Liver modeling barriers

Resolution of imaging technics

- ≈1mm
- Vessels under 1mm are not detected

Multiscale vascular trees

- From **10** to **10**⁻³ mm
- Complexity of the reconstruction of the entire tree
- Complexity of the implementation of the entire vascularization

Examples of models

Micro-perfusion models

Rani et al. 2006 Flow in the lobule Non Newtonian fluid

Organ-scale models

Lebre et al. 2017 Flow in the liver Porous media

Mosharaf-Dehkordi et al. 2006 Flow in the lobule Porous media + FSI

(a) Pressure field, $k_n = 1$

Ahmadi-Badjani et al. 2017 Flow in the lobule Porous media + solid deformation

Ma et al. 2019 Flow in the principal vessels Newtonian fluid

There is a strong relationship between the two scales!

Multiscale models: Multi-compartment flow

A model to describe the perfusion in high vascularized tissues

Rohan et al. 2018 Hepatic perfusion

Hyde et al. 2014 cardiac perfusion

Jozsa et al. 2021 Cerebral perfusion

Context

Methodology

Some results and perspectives

Multi-compartment model applied to the liver

1D flow in large vessels

Bernoulli with head loss

For each segment *j* limited by the nodes *i* and *j*

$$\frac{1}{2}\rho v_i^2 + p_i = \frac{1}{2}\rho v_j^2 + p_j + 32\mu \frac{L_j}{D_j} v_j$$

Conservation of the mass

For each node j linking s segments

$$\sum_{k}^{s} A_{k} v_{k} = 0$$

Fluid properties

Network parameters

ρ: Blood densityμ: Blood viscosity

- L_i : Length of the segment i
- D_i : Diameter of the segment i

Unknowns

 p_i : Pressure in the node i v_i : Velocity in the node i

3D Multi-compartment flow

 Virtual vascular trees: generated using Constrained Constructive Optimization algorithm (CCO)

For each compartment *i* of *the tree T*

$$\nabla \cdot \left(-k_{T,i}\vec{\nabla}p_{T,i}\right) + \sum_{j}^{N}\beta_{ij}\left(p_{T,i} - p_{T,j}\right) = 0$$

Medium parameters

 $k_{T,i}$: Permeability of the compartment i of the Tree T β_{ij} : Coupling coefficient between the compartments i and j

$$\beta_{ij} = 0$$
 if $|i - j| > 1$

Unknowns

 $p_{T,i}(x,y,z)$: Pressure of the compartment i of the Tree T

Parametrization of the multi-compartment porous media

For each compartment *i* of a vascular tree *T*

- Split the medium volume into elementary volumes
- Browse all the elementary volumes
- For each elementary volume *m*
 - Find the segments included in the elementary volume
 - For each segment *n* included in the elementary volume *m* we define
 - \succ V_n : segment volume
 - \triangleright P_n : Mean fluid pressure in the segment j
 - \succ Q_n : Fluid flow in the segment j
 - \succ d_n : segment diameter
 - \succ l_n : segment length
 - \succ s_{xn}, s_{yn}, s_{zn} : Coordinate difference between the two points limiting the segment in the 3 directions
 - Compute
 - $\succ Q^{mij} = \sum_n Q_n$
 - $P^{mi} = \frac{\sum_{n} P_{n} V_{n}}{\sum_{n} V_{n}}:$

Fluid flow crossing the segments linking I and j in the elementary volume m

Mean fluid pressure in the elementary volume *i*

Parametrization of the multi-compartment porous media

The permeability tensor of the compartment i in the elementary volume m:

$$K_{ab}^{mi} = \frac{\pi}{128\mu. V_m. \xi_0} \sum_n \frac{d_n^4. s_{an}. s_{bn}}{l_n} \qquad a, b = (x, y, z)$$

• The coupling coefficient between two compartments i and j in the elementary volume m:

$$\beta_{ij}^m = \frac{|\boldsymbol{Q}^{mij}|}{|\boldsymbol{P}^{mi} - \boldsymbol{P}^{mj}|}$$

 K^{mi} and β_{ij}^{m} were defined in the center of each elementary volume m

Linear interpolation $\rightarrow K^{i}(x, y, z)$ and $\beta_{ij}^{m}(x, y, z)$

Geometries

Image processing of CT-Scan sequences

Hepatic vein

Geometry processing + meshing

Modeling the 1D-flow problem

• Portal vein:

- 49 nodes
- 48 segments
- 25 terminal nodes
- Hepatic vein:
 - 40 nodes
 - 38 segments
 - 21 terminal nodes
- Total:
 - 89 nodes
 - 46 terminal nodes
 - 178 Unknowns

Portal vein

System resolution: 178 unknowns (velocity and pressure in each node)

Relations between terminal nodes pressures and velocities

Let N_t be the number of the terminal segments of the two trees, We need to write the velocities in the terminal nodes in the following form:

$$v_{i} = \sum_{j}^{N_{t}} \alpha_{ij} p_{j} \longrightarrow (v_{1}, \dots, v_{N_{t}})^{T} = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1N_{t}} \\ \vdots & \ddots & \vdots \\ \alpha_{N_{t}1} & \cdots & \alpha_{N_{t}N_{t}} \end{pmatrix} (p_{1}, \dots, p_{N_{t}})^{T}$$

We perform N_t simulation with the multi-compartment liver model:

• For j=1 to N_t

$$\begin{vmatrix} 1/(p_1, \dots, p_{N_t})^T = (0, \dots, 0)^T \\ 2/p_j = 1; \\ 3/\text{Compute the multi-compartment model:} \\ \nabla \cdot (-k_{T,i} \vec{\nabla} p_{T,i}) + \sum_j^N \beta_{ij} (p_{T,i} - p_{T,j}) = 0 \\ 4/\text{find} (v_1, \dots, v_{N_t})^T \rightarrow \alpha_{ij} \end{vmatrix}$$

Provides the remaining 46 equations

Resolution of the system

86 Bernoulli with head loss

$$\frac{1}{2}\rho v_i^2 + p_i = \frac{1}{2}\rho v_j^2 + p_j + 32\mu \frac{L_j}{D_j} v_j$$

• 46 Terminal pressures and velocities relations $v_i = \sum_{j}^{N_t} \alpha_{ij} p_j$

- 43 Conservation of the mass $\sum_{k}^{s} A_{k} v_{k} = 0$
- Boundary conditions
 - $v_{in} = v_{PV} \qquad p_{out1} = p_{HV} \\ p_{out2} = p_{HV}$

• Equation system: Find the vector [U] that satisfy $[K_1][U] + [K_2][U^2] - [BC] = 0$

 $[U] = (p_1, ..., p_{N_t}, v_1, ..., v_{N_t})^T: \text{ Unknowns vector}$ $[U^2] = (p_1^2, ..., p_{N_t}^2, v_1^2, ..., v_{N_t}^2)^T$

 A new method to couple the flow in the principal vessels and the flow in the liver

- Context
- Methodology
- Some results and perspectives

2D multi-compartment porous media with random vascular network (3 compartments)

• Inflow • Outflow

Mesh

 $\begin{array}{c} \begin{array}{c} -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.0 \\ -0.5 \\ x (mm) \end{array} \begin{array}{c} 0.005 \\ 0.5 \\ 0.000 \\ 0.5 \\ 0.000 \\ 0.5 \\ 0.000 \\ 0.5 \\ 0.000 \\ 0.5 \\ 0.000 \\ 0.000 \\ 0.5 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$

Coupling 1D and 3D multi-compartment flows in a 2D model

	E *	EO	E1	E2	E3	S 3	S2	S1	S0	S*
Pressure (Pa)	821	769	404	404	402	401	400	398	113	50
Velocity (m/s)	0.1	0,06	0,24	0,24	0,04	0,03	0,25	0,24	0,06	0,1

Liver multi-compartment porous media with random vascular network (3 compartments)

Random Network (10000 Fragments)

Liver multi-compartment porous media with random vascular network (3 compartments)

Boundary conditions in the terminal nodes

Liver multi-compartment porous media with realistic vascular network (3 compartments)

Liver muli-compartment porous media with realistic vascular network (3 compartments)

Filtration system

Compartment 3

Pressure

Compartment 1

Pressure in compartment 2 (mmHg)

7.6e+00

5.0e+00

Perspectives

Vessels geometry generation:

• A subjective process, may be different for different users

Porous media parametrization:

- Depends on the virtual network and the elementary volume
- Possibility to find a singularity in the permeability tensor for some elementary volumes
- → Sensitivity studies (elementary volume, compartment number...)

Coupling method:

- May face optimization issues for a huge number of unknowns
- \rightarrow Algorithm adaptation, resolution method

Validation of the model

• Find suitable and measurable internal quantities?